Initial High-Temperature Oxidation Behavior of Fe–Mn Binaries in Air: The Kinetics and Mechanism of Oxidation

Author:

Aghaeian S.ORCID,Sloof W. G.,Mol J. M. C.,Böttger A. J.

Abstract

AbstractHigh-temperature oxidation of steels can be relatively fast when exposed to air. Consequently, elucidating the effect of different parameters on the oxidation mechanism and kinetics is challenging. In this study, short-time oxidation was investigated to determine the oxidation mechanism, the affecting parameters, and the linear-to-parabolic growth transition of different Fe–Mn alloys in various oxygen partial pressures (10–30 kPa) and gas flow rates (26.6 and 53.3 sccm) in a temperature range of 950–1150 °C. Oxidation kinetics was investigated using a thermogravimetric analyzer (TGA) under controlled atmosphere. Linear oxide growth was observed within the first 20 minutes of oxidation. The linear rate constant was significantly increased by increasing the oxygen partial pressure or the flow rate of the oxidizing gas. The morphology of the oxide layer was determined by scanning electron microscopy (SEM). The crystal structure of the oxides formed was followed by in-situ X-ray diffraction (XRD), confirming that the growing layer consists of wustite mainly, which upon slow cooling to room temperature, transformed into magnetite. Energy-dispersive X-ray spectroscopy (EDS) showed that the atomic ratio of Fe+Mn to O was ~ 1.03:1 in the oxide scale, corresponding to Fe(Mn)O formation. Based on the characterization and a model for linear growth kinetics, it is concluded that the oxidation rate is controlled by the diffusion of oxidizing molecules through the gas layer to the sample’s surface. The findings led to a better understanding of initial oxidation behavior and provided a pathway for improved insight into the high-temperature oxidation behavior for more complex alloys.

Funder

Materials innovation institute

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Inorganic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3