Cold-water coral framework architecture is selectively shaped by bottom current flow

Author:

Sanna GiovanniORCID,Büscher Janina V.ORCID,Freiwald AndréORCID

Abstract

AbstractThe three-dimensional (3D) structure of habitat-forming corals has profound impacts on reef ecosystem processes. Elucidating coral structural responses to the environment is therefore crucial to understand changes in these ecosystems. However, little is known of how environmental factors shape coral structure in deep and dark waters, where cold-water coral (CWC) reefs thrive. Here, we attempt to infer the influence of current flow on CWC framework architecture, using 3D scanning to quantify colony shape traits (volume compactness and surface complexity) in the reef-building CWC Desmophyllum pertusum from adjacent fjord and offshore habitats with contrasting flow regimes. We find substantial architectural variability both between and within habitats. We show that corals are generally more compact in the fjord habitat, reflecting the prevailing higher current speeds, although differences in volume compactness between fjord and offshore corals are more subtle when comparing the fjord with the more exposed side of the offshore setting, probably due to locally intensified currents. Conversely, we observe no clear disparity in coral surface complexity between habitats (despite its positive correlation with volume compactness), suggesting it is not affected by current speed. Unlike volume compactness, surface complexity is similarly variable within a single colony as it is between colonies within the same habitat or between habitats and is therefore perhaps more dependent than volume compactness on microenvironmental conditions. These findings suggest a highly plastic, trait-specific and functionally relevant structural response of CWCs to current flow and underscore the importance of multiple concurrent sources of hydrodynamic forcing on CWC growth.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Senckenberg Gesellschaft für Naturforschung (SGN)

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3