The influence of Sargassum biomass and thallus density on the recruitment of coral reef fishes

Author:

Webber KelseyORCID,Fabricius Katharina,Wilson Shaun K.,Hoey Andrew S.

Abstract

AbstractA habitat’s structural complexity is a key determinant of the recruitment and composition of associated communities. While the influence of the physical structure of corals on coral reef fish recruitment is well studied, the significance of other benthic components, like macroalgae, remains unclear. We used experimental patches of the canopy-forming macroalga Sargassum to assess the influence of macroalgal complexity, which was manipulated by altering thallus density and biomass, on coral reef fish recruitment. We established twenty-five 75 × 75 cm patches on the reef flat of Orpheus Island, (inshore, central Great Barrier Reef) during austral summer. Patches were randomly divided into five treatments of varying Sargassum thallus density (3–9 thalli) and/or biomass (177–779 g per patch) and surveyed daily for recruiting fishes for 18 d. We recorded 35 fish species recruiting to our patches, with Sargassum biomass having the greatest influence on fish recruits’ abundance and species richness. Comparisons between treatments with equal thallus density but varying biomass revealed a positive association between Sargassum biomass and fish species richness and abundance (up to ~ 2.5-fold differences). Additionally, treatments with similar total Sargassum biomass but different density revealed a negative relationship between density and fish species richness and abundance (20–30% reduction). These positive associations with Sargassum thallus biomass suggest that recruiting fishes favour the fine-scale complexity of intra-thallus spaces, rather than the larger, inter-thallus gaps. This study highlights that fine-scales of complexity within tropical macroalgal beds may influence the reef fish recruitment value of these often-underappreciated areas.

Funder

Centre of Excellence for Coral Reef Studies, Australian Research Council

Great Barrier Reef Foundation

James Cook University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3