Development of a multi-excitation fluorescence (MEF) imaging method to improve the information content of benthic coral reef surveys

Author:

Bollati Elena,D’Angelo Cecilia,Kline David I.,Mitchell B. Greg,Wiedenmann JörgORCID

Abstract

AbstractBenthic surveys are a key component of monitoring and conservation efforts for coral reefs worldwide. While traditional image-based surveys rely on manual annotation of photographs to characterise benthic composition, automatic image annotation based on computer vision is becoming increasingly common. However, accurate classification of some benthic groups from reflectance images presents a challenge to local ecologists and computers alike. Most coral reef organisms produce one or a combination of fluorescent pigments, such as Green Fluorescent Protein (GFP)-like proteins found in corals, chlorophyll-a found in all photosynthetic organisms, and phycobiliproteins found in red macroalgae, crustose coralline algae (CCA) and cyanobacteria. Building on the potential of these pigments as a target for automatic image annotation, we developed a novel imaging method based on off-the-shelf components to improve classification of coral and other biotic substrates using a multi-excitation fluorescence (MEF) imaging system. We used RGB cameras to image the fluorescence emission of coral and algal pigments stimulated by narrow-waveband blue and green light, and then combined the information into three-channel pseudocolour images. Using a set of a priori rules defined by the relative pixel intensity produced in different channels, the method achieved successful classification of organisms into three categories based on the dominant fluorescent pigment expressed, facilitating discrimination of traditionally problematic groups. This work provides a conceptual foundation for future technological developments that will improve the cost, accuracy and speed of coral reef surveys.

Funder

Natural Environment Research Council

Deutsche Forschungsgemeinschaft

FP7 Ideas: European Research Council

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PHOTOGRAMMETRIC AND FLUORESCENCE SOLUTIONS FOR MONITORING OF HABITAT FORMING ORGANISMS;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2022-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3