Lipidome analysis of Symbiodiniaceae reveals possible mechanisms of heat stress tolerance in reef coral symbionts

Author:

Rosset S.,Koster G.,Brandsma J.,Hunt A. N.,Postle A. D.,D’Angelo C.ORCID

Abstract

Abstract Climate change-induced global warming threatens the survival of key ecosystems including shallow water coral reefs. Elevated temperatures can disrupt the normal physiological functioning of photosynthetic organisms by altering the fluidity and permeability of chloroplast membranes that is defined and regulated by their lipid composition. Since the habitat-forming reef corals rely on the obligatory symbiosis with dinoflagellates of the family Symbiodiniaceae, their heat stress response can be expected to be strongly influenced by the symbiont's lipid metabolism. However, in contrast to the steady increase in the knowledge of the functioning of coral symbionts at the genomic and transcriptomic level, the understanding of their membrane lipid composition and regulation in response to temperature stress is lagging behind. We have utilised mass spectrometry-based lipidomic analyses to identify the key polar lipids that form the biological membranes of reef coral symbionts, comparing the thermotolerant species Durusdinium trenchii with the thermosensitive taxon Cladocopium C3, both hosted by Acropora valida. Our results indicate that the superior thermotolerance D. trenchii inside the host corals could be achieved through (1) the amount and saturation of sulfoquinovosyldiacylglycerols, in particular through putative photosystem II interactions, (2) the increased digalactosyldiacylglycerol to monogalactosyldiacylglycerol ratio with the potential to stabilise thylakoid membranes and integrated proteins, and (3) the chaperone-like function of lyso-lipids. Thereby, our study provides novel insights into the heat tolerance of coral symbionts, contributing to the understanding of the potential of coral reef ecosystems to respond and adjust to heat stress events that are becoming more frequent due to climate change. Finally, our identification of multiple mechanisms of heat tolerance in Symbiodiniaceae furthers the knowledge of the general stress physiology of photosynthetic organisms.

Funder

FP7 Ideas: European Research Council

Southampton Marine and Maritime Institute (SMMI) and University of Southampton

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Reference70 articles.

1. Awai K, Matsuoka R, Shioi Y (2012) Lipid and fatty acid compositions of Symbiodinium strains. In: 12th international coral reef symposium

2. Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141

3. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471

4. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312

5. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3