Long-term preconditioning of the coral Pocillopora acuta does not restore performance in future ocean conditions

Author:

Roper C. D.ORCID,Donelson J. M.,Ferguson S.,van Oppen M. J. H.,Cantin N. E.

Abstract

AbstractThere is overwhelming evidence that tropical coral reefs are severely impacted by human induced climate change. Assessing the capability of reef-building corals to expand their tolerance limits to survive projected climate trajectories is critical for their protection and management. Acclimation mechanisms such as developmental plasticity may provide one means by which corals could cope with projected ocean warming and acidification. To assess the potential of preconditioning to enhance thermal tolerance in the coral Pocillopora acuta, colonies were kept under three different scenarios from settlement to 17 months old: present day (0.9 °C-weeks (Degree Heating Weeks), + 0.75 °C annual, 400 ppm pCO2) mid-century (2.5 °C-weeks, + 1.5 °C annual, 685 ppm pCO2) and end of century (5 °C-weeks, + 2 °C annual, 900 ppm pCO2) conditions. Colonies from the present-day scenario were subsequently introduced to the mid-century and end of century conditions for six weeks during summer thermal maxima to examine if preconditioned colonies (reared under these elevated conditions) had a higher physiological performance compared to naive individuals. Symbiodiniaceae density and chlorophyll a concentrations were significantly lower in mid-century and end of century preconditioned groups, and declines in symbiont density were observed over the six-week accumulated heat stress in all treatments. Maximum photosynthetic rate was significantly suppressed in mid-century and end of century preconditioned groups, while minimum saturating irradiances were highest for 2050 pre-exposed individuals with parents originating from specific populations. The results of this study indicate preconditioning to elevated temperature and pCO2 for 17 months did not enhance the physiological performance in P. acuta. However, variations in trait responses and effects on tolerance found among treatment groups provides evidence for differential capacity for phenotypic plasticity among populations which could have valuable applications for future restoration efforts.

Funder

Paul G. Allen Family Foundation

James Cook University

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Reference107 articles.

1. Allen MR, Dube OP, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N, Mulugetta Y, Perez R, Wairiu M, Zickfeld K (2018) Chapter 1: Framing and Context. In: Global Warming of 1.5°C. An IPCC Special Report [Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (Eds)]. Cambridge, United Kingdom: Cambridge University Press, and New York, NY, USA

2. Anderson KD, Cantin NE, Heron SF, Pisapia C, Pratchett MS (2017) Variation in growth rates of branching corals along Australia’s Great Barrier Reef. Sci Rep 7(1):2920

3. Angilletta MJ Jr (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford, UK

4. Anthony KRN, Hoegh-Guldberg O (2003a) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Functional Ecology 246–259.

5. Anthony KRN, Hoegh-Guldberg O (2003b) Kinetics of photoacclimation in corals. Oecologia 134(1):23–31. https://doi.org/10.1007/s00442-002-1095-1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3