Population and clonal structure of Acropora cf. hyacinthus to inform coral restoration practices on the Great Barrier Reef

Author:

Howlett LornaORCID,Camp Emma F.,Locatelli Nicolas S.,Baums Iliana B.,Strudwick Paige,Rassmussen Sage,Suggett David J.

Abstract

AbstractA key goal of coral restoration is to re-establish self-sustaining coral populations and ensure resilience to future stressors, which requires that genetic diversity is maximised. However, coral genetic and genotypic (clonal) diversity is variable across reef sites via success of sexual recruitment, and cryptic species diversity can complicate breeding efforts. Assessing genotypic and genetic diversity of colonies to be used in restoration is therefore critical to avoid founder, inbreeding or outbreeding effects. Considering recent efforts to upscale coral propagation on the Great Barrier Reef (GBR), we examined species, population and clonal structure of a commonly out-planted tabular Acropora species—Acropora hyacinthus (Dana, 1864). A total of 189 colonies were sampled from six reef systems throughout the northern-central GBR and genotyped using an Acropora-specific Affymetrix microarray, which resulted in 1387 variant sites that passed quality control. Cryptic species were readily resolved and all sampled A. hyacinthus colonies represented unique genotypes within sites at three reefs. At reefs that contained multi-ramet genets (clonal genotypes), the mean and maximum between-ramet distances were 0.68 and 1.99 m, respectively. Therefore, sampling colonies > 2 m apart increases the likelihood these colonies represent distinct genets. Such a sampling design therefore maximises genotypic diversity when sourcing colonies for propagation and out-planting. Based on these variant sites, we found no between-reef genetic divergence based on locality. Furthermore, through unintentional sampling of non-target tabular Acroporid species, we show how this genotyping method may be used for resolving taxonomic uncertainty as well as population dynamics.

Funder

University of Technology Sydney

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3