Scarus spinus, crustose coralline algae and cyanobacteria: an example of dietary specialization in the parrotfishes

Author:

Nicholson Georgina M.ORCID,Clements Kendall D.

Abstract

AbstractNiche differentiation is a key stabilizing mechanism in the maintenance of biodiversity and species coexistence. Recent work shows that trophic niche partitioning between parrotfishes (Labridae: Scarini) is more extensive than previously described. One Indo-Pacific species, Scarus spinus, appears highly specialized, scraping crustose coralline algae (CCA) with powerful oral jaws. CCA are of low nutritional value, suggesting that the dietary targets of this parrotfish are protein-rich microphotoautotrophs associated with CCA, particularly filamentous cyanobacteria. We collected feeding substrata samples at mid-shelf and outer-shelf sites near Lizard Island, Great Barrier Reef, Australia, in 2018 and 2019, respectively. Scarus spinus were followed on snorkel. When biting was observed, bite substrata were photographed and then a 22-mm-diameter core extracted around the bite site. Density of biota including filamentous cyanobacteria and diatoms was quantified microscopically on photographs of the bite cores (up to 630 × magnification). The taxonomy of cyanobacteria and CCA was refined using next-generation sequencing of 16S and 18S rRNA genes, respectively. CCA and filamentous cyanobacteria were present on all bite cores and the density of filamentous cyanobacteria where S. spinus fed did not vary between mid-shelf and outer-reef samples. Epiphytic and shallow endophytic cyanobacteria were consistently associated with the CCA where S. spinus fed, including Calothrix spp., Mastigocoleus testarum, Leptolyngbya spp., Hyella patelloides and Oscillatoriales. Our results emphasize the importance of high-resolution species-specific dietary data for parrotfishes. We conclude that polyphasic methods are essential both for diet tracing and to develop our understanding of the cyanobacteria that are integral to coral reef functioning.

Funder

University of Auckland

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3