Climate impacts alter fisheries productivity and turnover on coral reefs

Author:

Hamilton MarkORCID,Robinson James P. W.,Benkwitt Cassandra E.,Wilson Shaun K.,MacNeil M. Aaron,Ebrahim Ameer,Graham Nicholas A. J.

Abstract

AbstractAlteration of benthic reef habitat after coral bleaching and mortality induces changes in fish assemblages, with implications for fisheries. Our understanding of climate impacts to coral reef fisheries is largely based on fish abundance and biomass. The rates at which biomass is produced and replenished (productivity and turnover) are also important to sustaining fisheries, yet the responses of these metrics following bleaching are largely unknown. Here, we examine changes in fish productivity and turnover after mass coral bleaching events in Seychelles, on reefs that were recovering to coral-dominated habitats and those that shifted to macroalgae-dominated regimes. Productivity of fish assemblages increased on all recovering reefs, particularly on fished reefs resulting in levels similar to protected reefs 19 years after bleaching. Herbivore-detritivores, such as scraping and excavating parrotfish, appeared to drive biomass production through increased abundance on recovering reefs. Productivity on regime-shifted reefs remained stable at 1994 levels in fished areas, with increases observed on protected reefs. Large increases in browser productivity (particularly on protected reefs), combined with increases for invertivores, maintained post-bleaching productivity on macroalgal reefs. For all diet groups, net turnover was generally higher on fished regime-shifted reefs than on recovering reefs, suggesting fish biomass is more readily replenished on macroalgal reefs. Reef structural complexity was a positive predictor of productivity for all diet groups. These findings indicate that post-bleaching reef fish productivity is strongly influenced by benthic recovery trajectories, and demonstrates the importance of herbivore and invertivore species in sustaining small-scale inshore fisheries following climatic disturbances.

Funder

Natural Environment Research Council

Leverhulme Trust

Fondation Bertarelli

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3