Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future

Author:

Hanak Dawid P.,Manovic Vasilije

Abstract

AbstractRenewable energy sources and low-carbon power generation systems with carbon capture and storage (CCS) are expected to be key contributors towards the decarbonisation of the energy sector and to ensure sustainable energy supply in the future. However, the variable nature of wind and solar power generation systems may affect the operation of the electricity system grid. Deployment of energy storage is expected to increase grid stability and renewable energy utilisation. The power sector of the future, therefore, needs to seek a synergy between renewable energy sources and low-carbon fossil fuel power generation. This can be achieved via wide deployment of CCS linked with energy storage. Interestingly, recent progress in both the CCS and energy storage fields reveals that technologies such as calcium looping are technically viable and promising options in both cases. Novel integrated systems can be achieved by integrating these applications into CCS with inherent energy storage capacity, as well as linking other CCS technologies with renewable energy sources via energy storage technologies, which will maximise the profit from electricity production, mitigate efficiency and economic penalties related to CCS, and improve renewable energy utilisation.

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering

Reference44 articles.

1. IEA. Tracking Clean Energy Progress. Paris: IEA Publications, 2019

2. Akrami A, Doostizadeh M, Aminifar F. Power system flexibility: An overview of emergence to evolution. Journal of Modern Power Systems and Clean Energy, 2019, 7(5): 987–1007

3. Bui M, Adjiman C S, Bardow A, Anthony E J, Boston A, Brown S, Fennel P S, Fuss S, Galindo A, Hackett L A, et al. Carbon capture and storage (CCS): The way forward. Energy & Environmental Science, 2018, 11(5): 1062–1176

4. NREL. Renewable Electricity Futures Study. Golden: National Energy Technology Laboratory, 2012

5. Pierpont B, Nelson D, Goggins A, Posner D. Flexibility. The Path to Low-Carbon, Low-Cost Electricity Grids. London: Climate Policy Initiative, 2017

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3