Agronomic performance of soybean and sorghum in a short rotation poplar coppice alley-cropping system under Mediterranean conditions

Author:

Mantino AlbertoORCID,Pecchioni Giovanni,Tozzini Cristiano,Mele Marcello,Ragaglini Giorgio

Abstract

AbstractThe transition from conventional arable towards silvoarable systems can increase the delivery of ecosystem services. Nevertheless, the assessment of crop yield under agroforestry condition is crucial to evaluate of the reliability of these systems and to increase the knowledge base needed to support their design. Although the feasibility of poplar short rotation coppice (SRC) silvoarable alley-cropping systems has been widely investigated, few studies have addressed the agronomic response of crops intercropped with poplar SRC in narrow alleys, especially in Mediterranean environments. Thus, this paper treats the effects of SRC poplar rows on soybean and sorghum productivity in a 2-year rotation implemented in an alley-cropping system. A field experiment was carried out in 2018 and 2019 with the objective of measuring and evaluating effects of light availability variation, as affected by the growing rate of 2-year coppice cycle poplar SRC rows, and the soil characteristics on soybean-sorghum and sorghum–soybean rotations. Above-ground biomass, grain yield and crops residue showed a significant reduction in the tree–crop interface up to 74% and sorghum proved to be less tolerant to light reduction compared to soybean. Our results demonstrated that light is the most important factor for sorghum cultivation, despite grain yield was also influenced by the soil characteristics such as pH, while soybean is affected also by soil moisture and water retention capacity. The design of crop rotation in an SRC-based agroforestry system needs to consider the different agronomic performance of different crops and the harvest cycle of tree rows.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3