Evaluating tree growth factors into species-specific functional soil maps for improved agroforestry system efficiency

Author:

Jiang Zhuo-Dong,Owens Phillip R.ORCID,Ashworth Amanda J.,Fuentes Bryan A.,Thomas Andrew L.,Sauer Thomas J.,Wang Qiu-Bing

Abstract

AbstractAgroforestry systems play an important role in sustainable agroecosystems. However, accurately and adequately quantifying the relationships between environmental factors and tree growth in these systems are still lacking. Objectives of this study were to quantify environmental factors affecting growth of four tree species and to develop functional soil maps (FSM) for each species in an agroforestry site. The diameter at breast height, absolute growth rate (AGR), and neighborhood competition index of 259 trees from four species (northern red oak [Quercus rubra], pecan [Carya illinoinensis], cottonwood [Populus deltoides], and sycamore [Platanus occidentalis]) were determined. A total of 51 topsoil samples were collected and analyzed, and 12 terrain attributes were derived from the digital elevation model. The relationships between AGR, soil, topography, and tree size were analyzed using Spearman correlation. Based on correlation analysis, FSM for each species were generated using the k-means cluster method by overlaying correlated soil and terrain attribute maps. Results showed tree size and terrain attributes were driving factors affecting tree growth rate relative to soil properties. The spatial variations in AGR among functional units were statistically compared within tree species and the areas with larger AGR were identified by the FSM. This study demonstrated that FSM could delineate areas with different AGR for the oak, cottonwood, and sycamore trees. The AGR of pecan trees did not vary among functional units. The generated FSM may allow land managers to more precisely establish and manage agroforestry systems.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

China Scholarship Council

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3