On the structural complexity of central European agroforestry systems: a quantitative assessment using terrestrial laser scanning in single-scan mode

Author:

Seidel DominikORCID,Stiers Melissa,Ehbrecht Martin,Werning Maik,Annighöfer Peter

Abstract

AbstractAgroforestry systems provide important ecosystem functions and services. They have the potential to enrich agricultural monocultures in central Europe with structural elements otherwise absent, which is expected to be accompanied by a surplus of ecosystem functions. Here we used quantitative measures derived from terrestrial laser scanning in single-scan mode to describe the structural complexity, the canopy openness, the foliage height diversity and the understory complexity of four common agroforest systems in central Europe. We accessed silvopasture systems with grazing ponies and cattle as well as fellow deer, short rotation forests with agricultural use between the tree rows, tree orchards with grazing sheep and Christmas tree plantations on which chickens forage. As a reference, we used data for 65 forest sites across Germany, representing different forest types, various dominant tree species, stand ages and management systems. We found that overall stand structural complexity is ranked as follows: forest > silvopasture systems > short rotation forest > tree orchard > Christmas tree plantation. Consequently, if overall structural complexity of an agricultural landscape shall be enriched, there is now strong evidence on how this may be achieved using agroforests. However, if the focus lies on selected structures that serve specific functions, e.g. dense understory to provide animal shelter, specific types of agroforests may be chosen and the ranking in overall structural complexity may be less important.

Funder

Deutsche Forschungsgemeinschaft

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Agronomy and Crop Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3