1. Agrawal P, Nair AV, Abbeel P, Malik J, Levine S (2016) Learning to poke by poking: experiential learning of intuitive physics. In: Advances in neural information processing systems, pp 5074–5082
2. Allevato A, Pryor M, Thomaz A (2020) Multi-parameter real-world system identification using iterative residual tuning. In: Proceedings of the ASME international design and technical conference. St. Louis
3. Allevato A, Short ES, Pryor M, Thomaz A (2020) Tunenet: one-shot residual tuning for system identification and sim-to-real robot task transfer. In: LP Kaelbling, D Kragic, K Sugiura (eds) Proceedings of the conference on robot learning, Proceedings of machine learning research, vol 100. PMLR, pp 445–455. http://proceedings.mlr.press/v100/allevato20a.html
4. Arruda E, Mathew MJ, Kopicki M, Mistry M, Azad M, Wyatt JL (2017) Uncertainty averse pushing with model predictive path integral control. In: IEEE-RAS international conference on humanoid robots, pp 497–502. https://doi.org/10.1109/HUMANOIDS.2017.8246918
5. Bauza M, Alet F, Lin YC, Lozano-Pérez T, Kaelbling LP, Isola P, Rodriguez A (2019) Omnipush: accurate, diverse, real-world dataset of pushing dynamics with rgb-d video. arXiv preprint arXiv:1910.00618