Cross-Modality Imaging of Murine Tumor Vasculature—a Feasibility Study

Author:

Zopf Lydia M.,Heimel Patrick,Geyer Stefan H.,Kavirayani Anoop,Reier Susanne,Fröhlich Vanessa,Stiglbauer-Tscholakoff Alexander,Chen Zhe,Nics Lukas,Zinnanti Jelena,Drexler Wolfgang,Mitterhauser Markus,Helbich Thomas,Weninger Wolfgang J.,Slezak Paul,Obenauf Anna,Bühler Katja,Walter AndreasORCID

Abstract

AbstractTumor vasculature and angiogenesis play a crucial role in tumor progression. Their visualization is therefore of utmost importance to the community. In this proof-of-principle study, we have established a novel cross-modality imaging (CMI) pipeline to characterize exactly the same murine tumors across scales and penetration depths, using orthotopic models of melanoma cancer. This allowed the acquisition of a comprehensive set of vascular parameters for a single tumor. The workflow visualizes capillaries at different length scales, puts them into the context of the overall tumor vessel network and allows quantification and comparison of vessel densities and morphologies by different modalities. The workflow adds information about hypoxia and blood flow rates. The CMI approach includes well-established technologies such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), and ultrasound (US), and modalities that are recent entrants into preclinical discovery such as optical coherence tomography (OCT) and high-resolution episcopic microscopy (HREM). This novel CMI platform establishes the feasibility of combining these technologies using an extensive image processing pipeline. Despite the challenges pertaining to the integration of microscopic and macroscopic data across spatial resolutions, we also established an open-source pipeline for the semi-automated co-registration of the diverse multiscale datasets, which enables truly correlative vascular imaging. Although focused on tumor vasculature, our CMI platform can be used to tackle a multitude of research questions in cancer biology.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Radiology Nuclear Medicine and imaging,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3