Radiosynthesis and Analysis of (S)-4-(3-[18F]Fluoropropyl)-L-Glutamic Acid

Author:

Brown GavinORCID,Soloviev Dmitry,Lewis David Y.

Abstract

Abstract Purpose (S)-4-(3-[18F]Fluoropropyl)-L-glutamic acid ([18F]FSPG) is an L-glutamate derivative used as a PET biomarker to assess intracellular redox status in vivo through targeting of the cystine/glutamate antiporter protein, xc transporter. In this report, we describe a radiosynthesis of [18F]FSPG for use in PET studies that address specific challenges in relation to the radiotracer purity, molar activity, and quality control testing methods. Procedures The radiosynthesis of [18F]FSPG was performed using a customised RNPlus Research automated radiosynthesis system (Synthra GmbH, Hamburg, Germany). [18F]FSPG was labelled in the 3-fluoropropylmoiety at the 4-position of the glutamic acid backbone with fluorine-18 via substitution of nucleophilic [18F]fluoride with a protected naphthylsulfonyloxy-propyl-L-glutamate derivative. Radiochemical purity of the final product was determined by radio HPLC using a new method of direct analysis using a Hypercarb C18 column. Results The average radioactivity yield of [18F]FSPG was 4.2 GBq (range, 3.4–4.8 GBq) at the end of synthesis, starting from 16 GBq of [18F]fluoride at the end of bombardment (n = 10) in a synthesis time of 50 min. The average molar activity and radioactivity volumetric concentration at the end of synthesis were 66 GBq µmol−1 (range, 48–73 GBq µmol−1) and 343–400 MBq mL−1, respectively. Conclusion Stability tests using a 4.6 GBq dose with a radioactivity volumetric concentration of 369 MBq mL−1 at the end of synthesis showed no observable radiolysis 3 h after production. The formulated product is of high radiochemical purity (> 95%) and higher molar activity compared to previous methods and is safe to inject into mice up to 3 h after production.

Funder

Beatson Institute for Cancer Research

Beatson Cancer Charity

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3