Abstract
Abstract
Purpose
Noninvasive imaging of protein aggregates in the brain is critical for the early diagnosis, disease monitoring, and evaluation of the effectiveness of novel therapies for Alzheimer’s disease (AD). Near-infrared fluorescence (NIRF) imaging with specific probes is a promising technique for the in vivo detection of protein deposits without radiation exposure. Comprehensive screening of fluorescent compounds identified a novel compound, THK-565, for the in vivo imaging of amyloid-β (Aβ) deposits in the mouse brain. This study assessed whether THK-565 could detect amyloid-β deposits in vivo in the AD mouse model.
Procedures
The fluorescent properties of THK-565 were evaluated in the presence and absence of Aβ fibrils. APP knock-in (APP-KI) mice were used as an animal model of AD. In vivo NIRF images were acquired after the intravenous administration of THK-565 and THK-265 in mice. The binding selectivity of THK-565 to Aβ was evaluated using brain slices obtained from these mouse models.
Results
The fluorescence intensity of the THK-565 solution substantially increased by mixing with Aβ fibrils. The maximum emission wavelength of the complex of THK-565 and Aβ fibrils was 704 nm, which was within the optical window range. THK-565 selectively bound to amyloid deposits in brain sections of APP-KI mice After the intravenous administration of THK-565, the fluorescence signal in the head of APP-KI mice was significantly higher than that of wild-type mice and higher than that after administration of THK-265. Ex vivo analysis confirmed that the THK-565 signal corresponded to Aβ immunostaining in the brain sections of these mice.
Conclusions
A novel NIRF probe, THK-565, enabled the in vivo detection of Aβ deposits in the brains of the AD mouse model, suggesting that NIRF imaging with THK-565 could non-invasively assess disease-specific pathology in AD.
Funder
Ministry of Education, Culture, Sports, Science, and Technology of Japan
Sumitomo Electric Industries
Small Business Innovation Research (SBIR) program of Japan
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献