Evaluation of [18F]F-DPA PET for Detecting Microglial Activation in the Spinal Cord of a Rat Model of Neuropathic Pain

Author:

Shimochi Saeka,Keller Thomas,Kujala Ella,Khabbal Joonas,Rajander Johan,Löyttyniemi Eliisa,Solin Olof,Nuutila Pirjo,Kanaya Shigehiko,Yatkin Emrah,Grönroos Tove J.,Iida HidehiroORCID

Abstract

Abstract Purpose Recent studies have linked activated spinal glia to neuropathic pain. Here, using a positron emission tomography (PET) scanner with high spatial resolution and sensitivity, we evaluated the feasibility and sensitivity of N,N-diethyl-2-(2-(4-([18F]fluoro)phenyl)-5,7-dimethylpyrazolo[1,5-a] pyrimidin-3-yl)acetamide ([18F]F-DPA) imaging for detecting spinal cord microglial activation after partial sciatic nerve ligation (PSNL) in rats. Procedures Neuropathic pain was induced in rats (n = 20) by PSNL, and pain sensation tests were conducted before surgery and 3 and 7 days post-injury. On day 7, in vivo PET imaging and ex vivo autoradiography were performed using [18F]F-DPA or [11C]PK11195. Ex vivo biodistribution and PET imaging of the removed spinal cord were carried out with [18F]F-DPA. Sham-operated and PK11195-pretreated animals were also examined. Results Mechanical allodynia was confirmed in the PSNL rats from day 3 through day 7. Ex vivo autoradiography showed a higher lesion-to-background uptake with [18F]F-DPA compared with [11C]PK11195. Ex vivo PET imaging of the removed spinal cord showed [18F]F-DPA accumulation in the inflammation site, which was immunohistochemically confirmed to coincide with microglia activation. Pretreatment with PK11195 eliminated the uptake. The SUV values of in vivo [18F]F-DPA and [11C]PK11195 PET were not significantly increased in the lesion compared with the reference region, and were fivefold higher than the values obtained from the ex vivo data. Ex vivo biodistribution revealed a twofold higher [18F]F-DPA uptake in the vertebral body compared to that seen in the bone from the skull. Conclusions [18F]F-DPA aided visualization of the spinal cord inflammation site in PSNL rats on ex vivo autoradiography and was superior to [11C]PK11195. In vivo [18F]F-DPA PET did not allow for visualization of tracer accumulation even using a high-spatial-resolution PET scanner. The main reason for this result was due to insufficient SUVs in the spinal cord region as compared with the background noise, in addition to a spillover from the vertebral body.

Funder

Japan Society for the Promotion of Science

Turku University Foundation

Japan Cardiovascular Research Foundation

University of Turku (UTU) including Turku University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3