Visualizing CAR-T cell Immunotherapy Using 3 Tesla Fluorine-19 MRI

Author:

Dubois Veronica P.,Sehl Olivia C.,Foster Paula J.,Ronald John A.

Abstract

Abstract Purpose Chimeric antigen receptor (CAR) T cell cancer immunotherapies have shown remarkable results in patients with hematological malignancies and represent the first approved genetically modified cellular therapies. However, not all blood cancer patients respond favorably, serious side effects have been reported, and the treatment of solid tumors has been a challenge. An imaging tool for visualizing the variety of CAR-T cell products in use and being explored could provide important patient-specific data on CAR-T cell location to inform on potential success or failure of treatment as well as off-target toxicities. Fluorine-19 (19F) magnetic resonance imaging (MRI) allows for the noninvasive detection of 19F perfluorocarbon (PFC) labeled cells. Our objective was to visualize PFC-labeled (PFC +) CAR-T cells in a mouse model of leukemia using clinical field strength (3 Tesla) 19F MRI and compare the cytotoxicity of PFC + versus unlabeled CAR-T cells. Procedures NSG mice (n = 17) received subcutaneous injections of CD19 + human B cell leukemia cells (NALM6) expressing firefly luciferase in their left hind flank (1 × 106). Twenty-one days later, each mouse received an intratumoral injection of 10 × 106 PFC + CD19-targeted CAR-T cells (n = 6), unlabeled CD19-targeted CAR-T cells (n = 3), PFC + untransduced T cells (n = 5), or an equivalent volume of saline (n = 3). 19F MRI was performed on mice treated with PFC + CAR-T cells days 1, 3, and 7 post-treatment. Bioluminescence imaging (BLI) was performed on all mice days − 1, 5, 10, and 14 post-treatment to monitor tumor response. Results PFC + CAR-T cells were successfully detected in tumors using 19F MRI on days 1, 3, and 7 post-injection. In vivo BLI data revealed that mice treated with PFC + or PFC − CAR-T cells had significantly lower tumor burden by day 14 compared to untreated mice and mice treated with PFC + untransduced T cells (p < 0.05). Importantly, mice treated with PFC + CAR-T cells showed equivalent cytotoxicity compared to mice receiving PFC − CAR-T cells. Conclusions Our studies demonstrate that clinical field strength 19F MRI can be used to visualize PFC + CAR-T cells for up to 7 days post–intratumoral injection. Importantly, PFC labeling did not significantly affect in vivo CAR-T cell cytotoxicity. These imaging tools may have broad applications for tracking emerging CAR-T cell therapies in preclinical models and may eventually be useful for the detection of CAR-T cells in patients where localized injection of CAR-T cells is being pursued.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Radiology Nuclear Medicine and imaging,Oncology

Reference39 articles.

1. Ferlay J, Laversanne M, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2020) Global cancer observatory: cancer today. Lyon: International Agency for Research on Cancer

2. Canadian Cancer Statistics Advisory Committee. Canadian Cancer Statistics 2020.Toronto, ON: Canadian Cancer Society; 2020. Available at: cancer.ca/Canadian-Cancer-Statistics-2020-EN. Accessed 1 Mar 2021

3. Gross G, Gorochov G, Waks T, Eshhar Z (1989) Generation of effector T cells expressing chimeric T cell receptor with antibody type-specificity. Transplant proc 21(1 Pt 1):127–130

4. Zhao L, Cao YJ (2019) Engineered T cell therapy for cancer in the clinic. Front Immunol 10:2250

5. Yong CSM, Dardalhon V, Devaud C, Taylor N, Darcy PK, Kershaw MH (2017) CAR T-cell therapy of solid tumors. Immunol Cell Biol 95(4):356–363

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3