Optimized Doxycycline-Inducible Gene Expression System for Genetic Programming of Tumor-Targeting Bacteria

Author:

Nguyen Dinh-Huy,You Sung-Hwan,Vo An-Trang Ngoc,Ngo Hien Thi-Thu,Van Nguyen Khuynh,Duong Mai Thi-Quynh,Choy Hyon E.,Song Miryoung,Hong Yeongjin,Min Jung-JoonORCID

Abstract

Abstract Purpose In the programming of tumor-targeting bacteria, various therapeutic or reporter genes are expressed by different gene-triggering strategies. Previously, we engineered pJL87 plasmid with an inducible bacterial drug delivery system that simultaneously co-expressed two genes for therapy and imaging by a bidirectional tet promoter system only in response to the administration of exogenous doxycycline (Doxy). In this multi-cassette expression approach, tetA promoter (PtetA) was 100-fold higher in expression strength than tetR promoter (PtetR). In the present study, we developed pJH18 plasmid with novel Doxy-inducible gene expression system based on a tet promoter. Procedures In this system, Tet repressor (TetR) expressed by a weak constitutive promoter binds to tetO operator, resulting in the tight repression of gene expressions by PtetA and PtetR, and Doxy releases TetR from tetO to de-repress PtetA and PtetR. Results In Salmonella transformed with pJH18, the expression balance of bidirectional tet promoters in pJH18 was remarkably improved (PtetA:PtetR = 4~6:1) compared with that of pJL87 (PtetA:PtetR = 100:1) in the presence of Doxy. Also, the expression level by novel tet system was much higher in Salmonella transformed with pJH18 than in those with pJL87 (80-fold in rluc8 and 5-fold in clyA). Interestingly, pJH18 of the transformed Salmonella was much more stably maintained than pJL87 in antibiotic-free tumor-bearing mice (about 41-fold), because only pJH18 carries bom sequence with an essential role in preventing the plasmid-free population of programmed Salmonella from undergoing cell division. Conclusions Overall, doxycycline-induced co-expression of two proteins at similar expression levels, we exploited bioluminescence reporter proteins with preclinical but no clinical utility. Future validation with clinically compatible reporter systems, for example, suitable for radionuclide imaging, is necessary to develop this system further towards potential clinical application.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Radiology, Nuclear Medicine and imaging,Oncology

Reference40 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3