More perceived but not faster evolution of heat stress than temperature extremes in the future

Author:

Brouillet AudreyORCID,Joussaume Sylvie

Abstract

AbstractGlobal warming is projected to intensify during the twenty-first century. Yet, only few studies investigate how global warming could be perceived by future populations. Here, we propose an assessment of how climate change could be perceived by combining climatological indicators. We analyse extremes of temperature (T99) and simplified Wet-Bulb Globe Temperature (WBGT99), a heat stress index assessing the combined effect of elevated temperature and humidity on the human body. The speed of change is defined for each year as the difference between the previous 20 years and the twenty upcoming years (i.e. with a moving baseline), and we assess how these speeds emerge from each last 20-year interannual variability. Using a set of 12 CMIP5 models, speeds of change of T99 and WBGT99 in 2080 are both twice as fast compared with current speeds in mid-latitudes, and by up to four times faster in the tropics under the RCP8.5 scenario. Warming accelerations are thus similar for T99 and WBGT99. However, these speeds in tropical regions in 2080 are projected to be 2.3 times larger than the last 20-year interannual variability for WBGT99, and only 1.5 to 1.8 times larger for T99. According to the models, the WBGT99 intensification will be more emergent from the recent year-to-year variability than the T99 warming. This analysis suggests that the accelerated warming of heat extremes will be felt more strongly by populations than current changes for RCP8.5, and that this evolution will be more perceived in heat stress than in temperature, particularly within the tropics.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3