Regional climate change projections from NA-CORDEX and their relation to climate sensitivity

Author:

Bukovsky Melissa S.ORCID,Mearns Linda O.

Abstract

AbstractThe climate sensitivity of global climate models (GCMs) strongly influences projected climate change due to increased atmospheric carbon dioxide. Reasonably, the climate sensitivity of a GCM may be expected to affect dynamically downscaled projections. However, there has been little examination of the effect of the climate sensitivity of GCMs on regional climate model (RCM) ensembles. Therefore, we present projections of temperature and precipitation from the ensemble of projections produced as a part of the North American branch of the international Coordinated Regional Downscaling Experiment (NA-CORDEX) in the context of their relationship to the climate sensitivity of their parent GCMs. NA-CORDEX simulations were produced at 50-km and 25-km resolutions with multiple RCMs which downscaled multiple GCMs that spanned nearly the full range of climate sensitivity available in the CMIP5 archive. We show that climate sensitivity is a very important source of spread in the NA-CORDEX ensemble, particularly for temperature. Temperature projections correlate with driving GCM climate sensitivity annually and seasonally across North America not only at a continental scale but also at a local-to-regional scale. Importantly, the spread in temperature projections would be reduced if only low, mid, or high climate sensitivity simulations were considered, or if only the ensemble mean were considered. Precipitation projections correlate with climate sensitivity, but only at a continental scale during the cold season, due to the increasing influence of other processes at finer scales. Additionally, it is shown that the RCMs do alter the projection space sampled by their driving GCMs.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3