Climatic controls on the survival and loss of ancient types of barley on North Atlantic Islands

Author:

Martin PeterORCID,Brown Terence A.ORCID,George Timothy S.ORCID,Gunnarson BjörnORCID,Loader Neil J.ORCID,Ross Paul,Wishart JohnORCID,Wilson RobORCID

Abstract

Abstract For ancient types of barley at sites in the Scottish Isles, Faroes, and Iceland, we calculated minimum temperature requirements for grain production (grain production threshold, GPT) as accumulated degree days over the cropping season. Site suitability for barley from AD 1200 to 2000 was investigated by comparing these thresholds with reconstructions of annual cropping season degree days (CSDD) using temperature and tree-ring data. In Iceland, between AD 1200 and 1500, reconstructed CSDD were more favorable in the southwest (Reykjavik), with fewer years below the GPT, than in the North, East and West, but there were two periods (1340–1389 and 1426–1475) with low average CSDD and several years below the GPT which possibly influenced the abandonment of barley cultivation around this time. Reconstructed CSDD for the Faroes (Tórshavn) had only one year below the GPT, but 15 periods of four or more consecutive years with low CSDD which would have challenged barley cultivation, especially in the thirteenth century. Reconstructed CSDD were highest for the Scottish Isles, allowing a more prominent role of barley in the farming system and economy. Nevertheless, years with poor harvests or famines were common and about half were associated with low CSDD, resulting in a significant temperature link but also demonstrating the important contribution of other factors. Despite frequent unfavorable years in both the Faroes and Scottish Isles, resilient production systems, well-adapted barley strains and socio-economic factors allowed barley cultivation to continue, and some ancient types to survive to the present day.

Funder

Rural and Environment Science and Analytical Services Division

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3