The role of methane in future climate strategies: mitigation potentials and climate impacts

Author:

Harmsen MathijsORCID,van Vuuren Detlef P.,Bodirsky Benjamin Leon,Chateau Jean,Durand-Lasserve Olivier,Drouet Laurent,Fricko Oliver,Fujimori Shinichiro,Gernaat David E. H. J.,Hanaoka Tatsuya,Hilaire Jérôme,Keramidas Kimon,Luderer Gunnar,Moura Maria Cecilia P.,Sano Fuminori,Smith Steven J.,Wada Kenichi

Abstract

AbstractThis study examines model-specific assumptions and projections of methane (CH4) emissions in deep mitigation scenarios generated by integrated assessment models (IAMs). For this, scenarios of nine models are compared in terms of sectoral and regional CH4 emission reduction strategies, as well as resulting climate impacts. The models’ projected reduction potentials are compared to sector and technology-specific reduction potentials found in literature. Significant cost-effective and non-climate policy related reductions are projected in the reference case (10–36% compared to a “frozen emission factor” scenario in 2100). Still, compared to 2010, CH4 emissions are expected to rise steadily by 9–72% (up to 412 to 654 Mt CH4/year). Ambitious CO2 reduction measures could by themselves lead to a reduction of CH4 emissions due to a reduction of fossil fuels (22–48% compared to the reference case in 2100). However, direct CH4 mitigation is crucial and more effective in bringing down CH4 (50–74% compared to the reference case). Given the limited reduction potential, agriculture CH4 emissions are projected to constitute an increasingly larger share of total anthropogenic CH4 emissions in mitigation scenarios. Enteric fermentation in ruminants is in that respect by far the largest mitigation bottleneck later in the century with a projected 40–78% of total remaining CH4 emissions in 2100 in a strong (2 °C) climate policy case.

Funder

Climate Works Foundation

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

Reference29 articles.

1. Clarke L, et al. (2014) Assessing transformation pathways. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

2. EMF (2019) Energy Modeling Forum (EMF)-30 Study on Short-Lived Climate Forcers (SLCF) and Air Quality. https://emf.stanford.edu/projects/emf-30-short-lived-climate-forcers-air-quality

3. Etminan M et al (2016) Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys Res Lett 43

4. Gambhir A et al (2017) The contribution of non-CO2 greenhouse gas mitigation to achieving long-term temperature goals. Energies 10:602

5. GECS (2002) Greenhouse gas emission control strategies - research project N° EVK2-CT-1999-00010. Thematic Programme : Environment and Sustainable Development of the DG Research Fifth Framework Programme

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3