Revealing effective regional decarbonisation measures to limit global temperature increase in uncertain transition scenarios with machine learning techniques

Author:

Li Pei-HaoORCID,Pye Steve,Keppo Ilkka,Jaxa-Rozen Marc,Trutnevyte Evelina

Abstract

AbstractClimate change mitigation scenarios generated by integrated assessment models have been extensively used to support climate change negotiations on the global stage. To date, most studies exploring ensembles of these scenarios focus on the global picture, with more limited attention to regional metrics. A systematic approach is still lacking to improve the understanding of regional heterogeneity, highlighting key regional decarbonisation measures and their relative importance for meeting global climate goals under deep uncertainty. This study proposes a novel approach to gaining robust insights into regional decarbonisation strategies using machine learning techniques based on the IPCC SR1.5 scenario database. Random forest analysis first reveals crucial metrics to limit global temperature increases. Logistic regression modelling and the patient rule induction method are then used to identify which of these metrics and their combinations are most influential in meeting climate goals below 2 °C or below 1.5 °C. Solar power and sectoral electrification across all regions have been found to be the most effective measures to limit temperature increases. To further limit increase below 1.5 °C and not only 2 °C, decommissioning of unabated gas plants should be prioritised along with energy efficiency improvements. Bioenergy and wind power show higher regional heterogeneity in limiting temperature increases, with lower influences than aforementioned measures, and are especially relevant in Latin America (bioenergy) and countries of the Organisation for Economic Co-operation and Development and the Former Soviet Union (bioenergy and wind). In the future, a larger scenario ensemble can be applied to reveal more robust and comprehensive insights.

Funder

Horizon 2020 Framework Programme

UK Energy Research Centre

Engineering and Physical Sciences Research Council

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3