Past and future rainfall change in sub-regions of Victoria, Australia

Author:

Rauniyar Surendra P.ORCID,Power Scott B.ORCID

Abstract

AbstractWe examine rainfall variability and change in three sub-regions of the state of Victoria in Australia: the Murray Basin Victoria (MBVic), southeast Victoria (SEVic), and southwest Victoria (SWVic). These sub-regions represent three different hydrological super-catchments over Victoria and received average cool season rainfall for the 1997–2018 period, about 15%, 11%, and 8% less, respectively, than the 1900–1959 average. All three observed declines are shown to be very unusual in terms of historical variability. On analysing CMIP5 models under different forcing conditions (preindustrial, historical-all, historical-GHGs-only, historical-natural-only, RCP2.6, RCP4.5, and RCP8.5), we estimate that external forcing caused 30% of the observed drying in SWVic, 18% in MBVic, and 17% in SEVic. The external forcing contributions to the observed trend for the 1900–2018 period are estimated to be 56%, 17%, and 24% for SWVic, MBVic, and SEVic, respectively. Taken at face value, these figures suggest that only the 1900–2018 trend in SWVic was dominated by external forcing. Nearly all models underestimate the magnitude of the observed drying. This arises because models underestimate the magnitude of decadal variability, and because models might also underestimate externally forced drying, and/or the contribution of internal variability in the real world to the observed event was unusually large. By 2037, approximately 90% of the models simulate drying in SWVic, even under a low emissions scenario. Under a high emission scenario, the anthropogenically forced drying towards the late twenty-first century is so large in all three sub-regions that internal variability appears too small to offset it.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3