Historical climate impact attribution of changes in river flow and sediment loads at selected gauging stations in the Nile basin

Author:

Nkwasa AlbertORCID,Chawanda Celray James,Schlemm Annika,Ekolu Job,Frieler Katja,van Griensven Ann

Abstract

AbstractThe Nile basin is the second largest basin in Africa and one of the regions experiencing high climatic diversity with variability of precipitation and deteriorating water resources. As climate change is affecting most of the hydroclimatic variables across the world, this study assesses whether historical changes in river flow and sediment loads at selected gauges in the Nile basin can be attributed to climate change. An impact attribution approach is employed by constraining a process-based model with a set of factual and counterfactual climate forcing data for 69 years (1951–2019), from the impact attribution setup of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a). To quantify the role of climate change, we use the non-parametric Mann-Kendall test to identify trends and calculate the differences in long-term mean annual river flow and sediment load simulations between a model setup using factual and counterfactual climate forcing data. Results for selected river stations in the Lake Victoria basin show reasonable evidence of a long-term historical increase in river flows (two stations) and sediment load (one station), largely attributed to changes in climate. In contrast, within the Blue Nile and Main Nile basins, there is a slight decrease of river flows at four selected stations under factual climate, which can be attributed to climate change, but no significant changes in sediment load (one station). These findings show spatial differences in the impacts of climate change on river flows and sediment load in the study area for the historical period.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3