Heterogeneous snowpack response and snow drought occurrence across river basins of northwestern North America under 1.0°C to 4.0°C global warming

Author:

Shrestha Rajesh R.ORCID,Bonsal Barrie R.,Bonnyman James M.,Cannon Alex J.,Najafi Mohammad Reza

Abstract

AbstractAnthropogenic climate change is affecting the snowpack freshwater storage, with socioeconomic and ecological impacts. We present an assessment of maximum snow water equivalent (SWEmax) change in large river basins of the northwestern North America region using the Canadian Regional Climate Model 50-member ensemble under 1.0 °C to 4.0 °C global warming thresholds above the pre-industrial period. The projections indicate steep SWEmax decline in the warmer coastal/southern basins (i.e., Skeena, Fraser and Columbia), moderate decline in the milder interior basins (i.e., Peace, Athabasca and Saskatchewan), and either a small increase or decrease in the colder northern basins (i.e., Yukon, Peel, and Liard). A key factor for these spatial differences is the proximity of winter mean temperature to the freeze/melt threshold, with larger SWEmax declines for the basins closer to the threshold. Using the random forests machine-learning model, we find that the SWEmax change is primarily temperature controlled, especially for warmer basins. Further, under a categorical framework of below-normal SWEmax defined as snow drought (SD), we find that above-normal temperature and precipitation are the dominant conditions for SD occurrences under higher global warming thresholds. This implies a limited capacity of precipitation increase to compensate the temperature-driven snowpack decline. Additionally, the frequency and severity of SD occurrences are projected to be most extreme in the southern basins where current water demands are highest. Overall, the results of this study, including insights on snowpack changes, their climatic controls, and the framework for SD classification, are applicable for basins spanning a range of hydro-climatological regimes.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3