Abstract
AbstractDeveloping a better scientific understanding of anthropogenic climate change and climate variability, especially the prediction/projection of climate futures with useful temporal and geographical resolution and quantified uncertainties, and using that knowledge to inform adaptation planning and action will become crucially important in the coming years. Generating such policy-relevant knowledge may be particularly important for developing countries such as India. It is with this backdrop that, in this paper, we analyze future heat waves in India by using observations and a large number of model simulations of historical, + 1.5 °C, and + 2.0 °C warmer worlds. In both the future scenarios, there is an increased probability of heat waves during June and July when the Indian monsoon is in full swing and humidity is high, which makes the heat events even more of a health risk. While the highest temperatures in heat waves may not increase much in future climates, the duration and areal extent of the heat waves will most likely increase, leading to the emergence of new heat wave-prone zones in India. The results indicate that the joint frequencies of the longest duration and large area events could be nearly threefold greater in the + 1.5 °C and fivefold greater in the + 2.0 °C future scenarios compared to historical simulations. Thus, overall, the study indicates a substantial increase in the risk of heat events that typically elicit warnings from forecasters. The likely widespread and persistent nature of heat wave events in the future, as revealed by this study, will require planning and adaptation measures beyond the short-term disaster planning frameworks currently in place. Exploring what these measures might look like is beyond the scope of this study, but it underlines the importance of developing climate knowledge with high temporal and geographical resolution capable of informing adaptation policy and planning.
Funder
Children’s Investment Fund Foundation to the School of Public Policy at IIT Delhi
Publisher
Springer Science and Business Media LLC
Subject
Atmospheric Science,Global and Planetary Change
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献