1. Bacciu D, Di Sotto L (2019) A non-negative factorization approach to node pooling in graph convolutional neural networks. In: Alviano M, Greco G, Scarcello F (eds) AI*IA 2019-advances in artificial intelligence, Lecture notes in computer science. Springer, Cham, pp 294–306, https://doi.org/10.1007/978-3-030-35166-3_21
2. Bacciu D, Errica F, Micheli A (2018) Contextual graph markov model: a deep and generative approach to graph processing. In: International Conference on Machine Learning, pp 294–303, ISSN: 1938-7228
3. Bacciu D, Errica F, Micheli A, Podda M (2020) A gentle introduction to deep learning for graphs. Neural Netw 129:203–221. https://doi.org/10.1016/j.neunet.2020.06.006
4. Battaglia PW, Hamrick JB, Bapst V, Sanchez-Gonzalez A, Zambaldi V, Malinowski M, Tacchetti A, Raposo D, Santoro A, Faulkner R, Gulcehre C, Song F, Ballard A, Gilmer J, Dahl G, Vaswani A, Allen K, Nash C, Langston V, Dyer C, Heess N, Wierstra D, Kohli P, Botvinick M, Vinyals O, Li Y, Pascanu R (2018) Relational inductive biases, deep learning, and graph networks. arXiv:1806.01261
5. Bianchi FM, Grattarola D, Alippi C (2020) Spectral clustering with graph neural networks for graph pooling. Proc Int Conf Mach Learn 1