Active learning: an empirical study of common baselines

Author:

Ramirez-Loaiza Maria E.,Sharma Manali,Kumar Geet,Bilgic Mustafa

Funder

Division of Information and Intelligent Systems

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference85 articles.

1. Abe N, Mamitsuka H (1998) Query learning strategies using boosting and bagging. In: Proceedings of the international conference on machine learning (ICML), pp 1–9

2. Ali A, Caruana R, Kapoor A (2014) Active learning with model selection. In: Proceedings of the AAAI conference on artificial intelligence, pp 1673–1679

3. Arora S, Nyberg E, Rose C (2009) Estimating annotation cost for active learning in a multiannotator environment. In: NAACL HLT Workshop on Active Learning for Natural Language Processing, pp 18–26

4. Attenberg J, Melville P, Provost F (2010) A unified approach to active dual supervision for labeling features and examples. In: Proceedings of the European conference on machine learning (ECML), pp 40–55

5. Balcan MF, Hanneke S, Wortman J (2008) The true sample complexity of active learning. In: Proceedings of the conference on learning theory (COLT), pp 45–56

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Undersampling method based on minority class density for imbalanced data;Expert Systems with Applications;2024-09

2. Active Code Learning: Benchmarking Sample-Efficient Training of Code Models;IEEE Transactions on Software Engineering;2024-05

3. Novel machine learning paradigms-enabled methods for smart building operations in data-challenging contexts: Progress and perspectives;National Science Open;2024-02-02

4. Adaptive Ensemble with Density Peak and Random Forest for Class-Imbalance Learning;2023 9th International Conference on Systems and Informatics (ICSAI);2023-12-16

5. ALLFA: Active Learning Through Label and Feature Augmentation;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3