Explaining deep convolutional models by measuring the influence of interpretable features in image classification

Author:

Ventura Francesco,Greco SalvatoreORCID,Apiletti Daniele,Cerquitelli Tania

Abstract

AbstractThe accuracy and flexibility of Deep Convolutional Neural Networks (DCNNs) have been highly validated over the past years. However, their intrinsic opaqueness is still affecting their reliability and limiting their application in critical production systems, where the black-box behavior is difficult to be accepted. This work proposes EBAnO, an innovative explanation framework able to analyze the decision-making process of DCNNs in image classification by providing prediction-local and class-based model-wise explanations through the unsupervised mining of knowledge contained in multiple convolutional layers. EBAnO provides detailed visual and numerical explanations thanks to two specific indexes that measure the features’ influence and their influence precision in the decision-making process. The framework has been experimentally evaluated, both quantitatively and qualitatively, by (i) analyzing its explanations with four state-of-the-art DCNN architectures, (ii) comparing its results with three state-of-the-art explanation strategies and (iii) assessing its effectiveness and easiness of understanding through human judgment, by means of an online survey. EBAnO has been released as open-source code and it is freely available online.

Funder

Politecnico di Torino

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Explainable and interpretable machine learning and data mining;Data Mining and Knowledge Discovery;2024-07-30

2. A Novel Survey on Image Classification Models for Explainable Predictions using Computer Vision;2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2024-06-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3