Fair detection of poisoning attacks in federated learning on non-i.i.d. data

Author:

Singh Ashneet Khandpur,Blanco-Justicia Alberto,Domingo-Ferrer JosepORCID

Funder

horizon 2020 framework programme

icrea

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Reference34 articles.

1. Bhagoji AN, Chakraborty S, Mittal P, Calo S (2019) Analyzing federated learning through an adversarial lens. In: International conference on machine learning, PMLR, pp 634–643

2. Blanchard P, Guerraoui R, Stainer J et al (2017) Machine learning with adversaries: byzantine tolerant gradient descent. In: Advances in neural information processing systems, pp 119–129

3. Blanco-Justicia A, Domingo-Ferrer J, Martínez S, Sánchez D, Flanagan A, Tan KE (2020) Achieving security and privacy in federated learning systems: survey, research challenges and future directions. arXiv preprint arXiv:2012.06810

4. Domingo-Ferrer J, Mateo-Sanz JM (2002) Practical data-oriented microaggregation for statistical disclosure control. IEEE Trans Knowl Data Eng 14(1):189–201

5. Domingo-Ferrer J, Torra V (2005) Ordinal, continuous and heterogeneous k-anonymity through microaggregation. Data Min Knowl Discov 11(2):195–212

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enabling federated learning across the computing continuum: Systems, challenges and future directions;Future Generation Computer Systems;2024-11

2. Clients Eligibility-Based Lightweight Protocol in Federated Learning: An IDS Use Case;IEEE Transactions on Network and Service Management;2024-08

3. CosPer: An adaptive personalized approach for enhancing fairness and robustness of federated learning;Information Sciences;2024-07

4. An Impact of Poisoning Attacks on Machine Learning Algorithms;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04

5. An Optimized Intelligent Malware Detection Framework for Securing Digital Data;Wireless Personal Communications;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3