EmbAssi: embedding assignment costs for similarity search in large graph databases

Author:

Bause Franka,Schubert ErichORCID,Kriege Nils M.ORCID

Abstract

AbstractThe graph edit distance is an intuitive measure to quantify the dissimilarity of graphs, but its computation is $$\mathsf {NP}$$ NP -hard and challenging in practice. We introduce methods for answering nearest neighbor and range queries regarding this distance efficiently for large databases with up to millions of graphs. We build on the filter-verification paradigm, where lower and upper bounds are used to reduce the number of exact computations of the graph edit distance. Highly effective bounds for this involve solving a linear assignment problem for each graph in the database, which is prohibitive in massive datasets. Index-based approaches typically provide only weak bounds leading to high computational costs verification. In this work, we derive novel lower bounds for efficient filtering from restricted assignment problems, where the cost function is a tree metric. This special case allows embedding the costs of optimal assignments isometrically into $$\ell _1$$ 1 space, rendering efficient indexing possible. We propose several lower bounds of the graph edit distance obtained from tree metrics reflecting the edit costs, which are combined for effective filtering. Our method termed EmbAssi can be integrated into existing filter-verification pipelines as a fast and effective pre-filtering step. Empirically we show that for many real-world graphs our lower bounds are already close to the exact graph edit distance, while our index construction and search scales to very large databases.

Funder

Vienna Science and Technology Fund

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Frequent Generalized Subgraph Mining via Graph Edit Distances;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3