Relaxing the strong triadic closure problem for edge strength inference

Author:

Adriaens FlorianORCID,De Bie Tijl,Gionis Aristides,Lijffijt Jefrey,Matakos Antonis,Rozenshtein Polina

Abstract

AbstractSocial networks often provide only a binary perspective on social ties: two individuals are either connected or not. While sometimes external information can be used to infer the strength of social ties, access to such information may be restricted or impractical to obtain. Sintos and Tsaparas (KDD 2014) first suggested to infer the strength of social ties from the topology of the network alone, by leveraging the Strong Triadic Closure (STC) property. The STC property states that if person A has strong social ties with persons B and C, B and C must be connected to each other as well (whether with a weak or strong tie). They exploited this property to formulate the inference of the strength of social ties as a NP-hard maximization problem, and proposed two approximation algorithms. We refine and improve this line of work, by developing a sequence of linear relaxations of the problem, which can be solved exactly in polynomial time. Usefully, these relaxations infer more fine-grained levels of tie strength (beyond strong and weak), which also allows one to avoid making arbitrary strong/weak strength assignments when the network topology provides inconclusive evidence. Moreover, these relaxations allow us to easily change the objective function to more sensible alternatives, instead of simply maximizing the number of strong edges. An extensive theoretical analysis leads to two efficient algorithmic approaches. Finally, our experimental results elucidate the strengths of the proposed approach, while at the same time questioning the validity of leveraging the STC property for edge strength inference in practice.

Funder

FP7 Ideas: European Research Council

Fonds Wetenschappelijk Onderzoek

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dense Subgraph Discovery Meets Strong Triadic Closure;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

2. Faster Approximation Algorithms for Parameterized Graph Clustering and Edge Labeling;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

3. Interplay between topology and edge weights in real-world graphs: concepts, patterns, and an algorithm;Data Mining and Knowledge Discovery;2023-07-26

4. Inferring student social link from spatiotemporal behavior data via entropy-based analyzing model;Intelligent Data Analysis;2023-01-30

5. Inferring Tie Strength in Temporal Networks;Machine Learning and Knowledge Discovery in Databases;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3