Abstract
AbstractTraditional anomaly detection methods aim to identify objects that deviate from most other objects by treating all features equally. In contrast, contextual anomaly detection methods aim to detect objects that deviate from other objects within a context of similar objects by dividing the features into contextual features and behavioral features. In this paper, we develop connections between dependency-based traditional anomaly detection methods and contextual anomaly detection methods. Based on resulting insights, we propose a novel approach to inherently interpretable contextual anomaly detection that uses Quantile Regression Forests to model dependencies between features. Extensive experiments on various synthetic and real-world datasets demonstrate that our method outperforms state-of-the-art anomaly detection methods in identifying contextual anomalies in terms of accuracy and interpretability.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Computer Science Applications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献