Bounding the family-wise error rate in local causal discovery using Rademacher averages

Author:

Simionato Dario,Vandin Fabio

Abstract

AbstractMany algorithms have been proposed to learn local graphical structures around target variables of interest from observational data, focusing on two sets of variables. The first one, called Parent–Children (PC) set, contains all the variables that are direct causes or consequences of the target while the second one, known as Markov boundary (MB), is the minimal set of variables with optimal prediction performances of the target. In this paper we introduce two novel algorithms for the PC and MB discovery tasks with rigorous guarantees on the Family-Wise Error Rate (FWER), that is, the probability of reporting any false positive in output. Our algorithms use Rademacher averages, a key concept from statistical learning theory, to properly account for the multiple-hypothesis testing problem arising in such tasks. Our evaluation on simulated data shows that our algorithms properly control for the FWER, while widely used algorithms do not provide guarantees on false discoveries even when correcting for multiple-hypothesis testing. Our experiments also show that our algorithms identify meaningful relations in real-world data.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Reference37 articles.

1. Aliferis CF, Statnikov A, Tsamardinos I, Mani S, Koutsoukos XD (2010) Local causal and Markov blanket induction for causal discovery and feature selection for classification part i: algorithms and empirical evaluation. JMLR 11(1):171–234

2. Aliferis CF, Tsamardinos I, Statnikov A (2003) Hiton: a novel Markov blanket algorithm for optimal variable selection. In: Proceedings of AMIA, pp 21–25

3. Armen AP, Tsamardinos I (2014) Estimation and control of the false discovery rate of Bayesian network skeleton identification. Tech. rep., TR-441. U. of Crete, pp 1–79

4. Bartlett PL, Mendelson S (2002) Rademacher and Gaussian complexities: risk bounds and structural results. JMLR 3:463–482

5. Bellot A, van der Schaar M (2019) Conditional independence testing using generative adversarial networks. In: Advances in neural information processing systems, 32, pp 1-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3