Implicit consensus clustering from multiple graphs

Author:

Boutalbi RafikaORCID,Labiod Lazhar,Nadif Mohamed

Abstract

AbstractDealing with relational learning generally relies on tools modeling relational data. An undirected graph can represent these data with vertices depicting entities and edges describing the relationships between the entities. These relationships can be well represented by multiple undirected graphs over the same set of vertices with edges arising from different graphs catching heterogeneous relations. The vertices of those networks are often structured in unknown clusters with varying properties of connectivity. These multiple graphs can be structured as a three-way tensor, where each slice of tensor depicts a graph which is represented by a count data matrix. To extract relevant clusters, we propose an appropriate model-based co-clustering capable of dealing with multiple graphs. The proposed model can be seen as a suitable tensor extension of mixture models of graphs, while the obtained co-clustering can be treated as a consensus clustering of nodes from multiple graphs. Applications on real datasets and comparisons with multi-view clustering and tensor decomposition methods show the interest of our contribution.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hierarchical Tensor Clustering for Multiple Graphs Representation;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

2. A Deep Dynamic Latent Block Model for Co-clustering of Zero-Inflated Data Matrices;Journal of Computational and Graphical Statistics;2024-04-02

3. Simultaneous Linear Multi-view Attributed Graph Representation Learning and Clustering;Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining;2023-02-27

4. Weighted Multi-view Clustering Based on Internal Evaluation;MultiMedia Modeling;2023

5. A Deep Dynamic Latent Block Model for the Co-Clustering of Zero-Inflated Data Matrices;Machine Learning and Knowledge Discovery in Databases: Research Track;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3