Bias-aware ranking from pairwise comparisons

Author:

Ferrara Antonio,Bonchi Francesco,Fabbri Francesco,Karimi Fariba,Wagner Claudia

Abstract

AbstractHuman feedback is often used, either directly or indirectly, as input to algorithmic decision making. However, humans are biased: if the algorithm that takes as input the human feedback does not control for potential biases, this might result in biased algorithmic decision making, which can have a tangible impact on people’s lives. In this paper, we study how to detect and correct for evaluators’ bias in the task of ranking people (or items) from pairwise comparisons. Specifically, we assume we are given pairwise comparisons of the items to be ranked produced by a set of evaluators. While the pairwise assessments of the evaluators should reflect to a certain extent the latent (unobservable) true quality scores of the items, they might be affected by each evaluator’s own bias against, or in favor, of some groups of items. By detecting and amending evaluators’ biases, we aim to produce a ranking of the items that is, as much as possible, in accordance with the ranking one would produce by having access to the latent quality scores. Our proposal is a novel method that extends the classic Bradley-Terry model by having a bias parameter for each evaluator which distorts the true quality score of each item, depending on the group the item belongs to. Thanks to the simplicity of the model, we are able to write explicitly its log-likelihood w.r.t. the parameters (i.e., items’ latent scores and evaluators’ bias) and optimize by means of the alternating approach. Our experiments on synthetic and real-world data confirm that our method is able to reconstruct the bias of each single evaluator extremely well and thus to outperform several non-trivial competitors in the task of producing a ranking which is as much as possible close to the unbiased ranking.

Funder

European Union’s Horizon 2020 for the project : “NoBIAS - Artificial Intelligence without Bias”

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FairMC Fair–Markov Chain Rank Aggregation Methods;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3