Expected passes

Author:

Anzer GabrielORCID,Bauer PascalORCID

Abstract

AbstractPasses are by far football’s (soccer) most frequent event, yet surprisingly little meaningful research has been devoted to quantify them. With the increase in availability of so-called positional data, describing the positioning of players and ball at every moment of the game, our work aims to determine the difficulty of every pass by calculating its success probability based on its surrounding circumstances. As most experts will agree, not all passes are of equal difficulty, however, most traditional metrics count them as such. With our work we can quantify how well players can execute passes, assess their risk profile, and even compute completion probabilities for hypothetical passes by combining physical and machine learning models. Our model uses the first 0.4 seconds of a ball trajectory and the movement vectors of all players to predict the intended target of a pass with an accuracy of $$93.0\%$$ 93.0 % for successful and $$72.0\%$$ 72.0 % for unsuccessful passes much higher than any previously published work. Our extreme gradient boosting model can then quantify the likelihood of a successful pass completion towards the identified target with an area under the curve (AUC) of $$93.4\%$$ 93.4 % . Finally, we discuss several potential applications, like player scouting or evaluating pass decisions.

Funder

Eberhard Karls Universität Tübingen

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence applications in the football codes: A systematic review;Journal of Sports Sciences;2024-07-02

2. Spatial roles in hockey special teams;Journal of Quantitative Analysis in Sports;2024-04-04

3. Improved passing accuracy by using pair practice in adolescent soccer players;Jurnal SPORTIF : Jurnal Penelitian Pembelajaran;2024-03-27

4. Finding repeatable progressive pass clusters and application in international football;Journal of Sports Analytics;2024-02-02

5. Pass Receiver and Outcome Prediction in Soccer Using Temporal Graph Networks;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3