Comparison of novelty detection methods for multispectral images in rover-based planetary exploration missions

Author:

Kerner Hannah R.ORCID,Wagstaff Kiri L.,Bue Brian D.,Wellington Danika F.,Jacob Samantha,Horton Paul,Bell James F.,Kwan Chiman,Ben Amor Heni

Abstract

Abstract Science teams for rover-based planetary exploration missions like the Mars Science Laboratory Curiosity rover have limited time for analyzing new data before making decisions about follow-up observations. There is a need for systems that can rapidly and intelligently extract information from planetary instrument datasets and focus attention on the most promising or novel observations. Several novelty detection methods have been explored in prior work for three-channel color images and non-image datasets, but few have considered multispectral or hyperspectral image datasets for the purpose of scientific discovery. We compared the performance of four novelty detection methods—Reed Xiaoli (RX) detectors, principal component analysis (PCA), autoencoders, and generative adversarial networks (GANs)—and the ability of each method to provide explanatory visualizations to help scientists understand and trust predictions made by the system. We show that pixel-wise RX and autoencoders trained with structural similarity (SSIM) loss can detect morphological novelties that are not detected by PCA, GANs, and mean squared error autoencoders, but that the latter methods are better suited for detecting spectral novelties—i.e., the best method for a given setting depends on the type of novelties that are sought. Additionally, we find that autoencoders provide the most useful explanatory visualizations for enabling users to understand and trust model detections, and that existing GAN approaches to novelty detection may be limited in this respect.

Funder

National Aeronautics and Space Administration

Jet Propulsion Laboratory

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3