Anomaly detection in sleep: detecting mouth breathing in children

Author:

Biedebach LukaORCID,Óskarsdóttir María,Arnardóttir Erna Sif,Sigurdardóttir Sigridur,Clausen Michael Valur,Sigurdardóttir Sigurveig Þ.,Serwatko Marta,Islind Anna Sigridur

Abstract

AbstractIdentifying mouth breathing during sleep in a reliable, non-invasive way is challenging and currently not included in sleep studies. However, it has a high clinical relevance in pediatrics, as it can negatively impact the physical and mental health of children. Since mouth breathing is an anomalous condition in the general population with only 2% prevalence in our data set, we are facing an anomaly detection problem. This type of human medical data is commonly approached with deep learning methods. However, applying multiple supervised and unsupervised machine learning methods to this anomaly detection problem showed that classic machine learning methods should also be taken into account. This paper compared deep learning and classic machine learning methods on respiratory data during sleep using a leave-one-out cross validation. This way we observed the uncertainty of the models and their performance across participants with varying signal quality and prevalence of mouth breathing. The main contribution is identifying the model with the highest clinical relevance to facilitate the diagnosis of chronic mouth breathing, which may allow more affected children to receive appropriate treatment.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3