A recurrent neural network architecture to model physical activity energy expenditure in older people

Author:

Paraschiakos StylianosORCID,de Sá Cláudio Rebelo,Okai Jeremiah,Slagboom P. Eline,Beekman Marian,Knobbe Arno

Abstract

AbstractThrough the quantification of physical activity energy expenditure (PAEE), health care monitoring has the potential to stimulate vital and healthy ageing, inducing behavioural changes in older people and linking these to personal health gains. To be able to measure PAEE in a health care perspective, methods from wearable accelerometers have been developed, however, mainly targeted towards younger people. Since elderly subjects differ in energy requirements and range of physical activities, the current models may not be suitable for estimating PAEE among the elderly. Furthermore, currently available methods seem to be either simple but non-generalizable or require elaborate (manual) feature construction steps. Because past activities influence present PAEE, we propose a modeling approach known for its ability to model sequential data, the recurrent neural network (RNN). To train the RNN for an elderly population, we used the growing old together validation (GOTOV) dataset with 34 healthy participants of 60 years and older (mean 65 years old), performing 16 different activities. We used accelerometers placed on wrist and ankle, and measurements of energy counts by means of indirect calorimetry. After optimization, we propose an architecture consisting of an RNN with 3 GRU layers and a feedforward network combining both accelerometer and participant-level data. Our efforts included switching mean to standard deviation for down-sampling the input data and combining temporal and static data (person-specific details such as age, weight, BMI). The resulting architecture produces accurate PAEE estimations while decreasing training input and time by a factor of 10. Subsequently, compared to the state-of-the-art, it is capable to integrate longer activity data which lead to more accurate estimations of low intensity activities EE. It can thus be employed to investigate associations of PAEE with vitality parameters of older people related to metabolic and cognitive health and mental well-being.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence for the study of human ageing: a systematic literature review;Applied Intelligence;2024-09-06

2. Estimation of Energy Expenditure in Wearable Healthcare Technology by Quantum-Based LSTM Modeling (Invited Paper);2024 International Conference on Quantum Communications, Networking, and Computing (QCNC);2024-07-01

3. A CNN-LSTM Model for IMU-based Energy Expenditure Estimation under Various Walking Conditions;2024 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL);2024-03-25

4. Comparative Analysis between IMU Signal-based Neural Network Models for Energy Expenditure Estimation;Journal of the Korean Society for Precision Engineering;2024-03-01

5. ASO-DKELM: Alpine skiing optimization based deep kernel extreme learning machine for elderly stroke detection from EEG signal;Biomedical Signal Processing and Control;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3