Online summarization of dynamic graphs using subjective interestingness for sequential data

Author:

Kapoor SarangORCID,Saxena Dhish KumarORCID,van Leeuwen MatthijsORCID

Abstract

AbstractMany real-world phenomena can be represented as dynamic graphs, i.e., networks that change over time. The problem of dynamic graph summarization, i.e., to succinctly describe the evolution of a dynamic graph, has been widely studied. Existing methods typically use objective measures to find fixed structures such as cliques, stars, and cores. Most of the methods, however, do not consider the problem of online summarization, where the summary is incrementally conveyed to the analyst as the graph evolves, and (thus) do not take into account the knowledge of the analyst at a specific moment in time. We address this gap in the literature through a novel, generic framework for subjective interestingness for sequential data. Specifically, we iteratively identify atomic changes, called ‘actions’, that provide most information relative to the current knowledge of the analyst. For this, we introduce a novel information gain measure, which is motivated by the minimum description length (MDL) principle. With this measure, our approach discovers compact summaries without having to decide on the number of patterns. As such, we are the first to combine approaches for data mining based on subjective interestingness (using the maximum entropy principle) with pattern-based summarization (using the MDL principle). We instantiate this framework for dynamic graphs and dense subgraph patterns, and present DSSG, a heuristic algorithm for the online summarization of dynamic graphs by means of informative actions, each of which represents an interpretable change to the connectivity structure of the graph. The experiments on real-world data demonstrate that our approach effectively discovers informative summaries. We conclude with a case study on data from an airline network to show its potential for real-world applications.

Funder

Leiden University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using dynamic knowledge graphs to detect emerging communities of knowledge;Knowledge-Based Systems;2024-06

2. Balancing Summarization and Change Detection in Graph Streams;2023 IEEE International Conference on Data Mining (ICDM);2023-12-01

3. Latent Variable Model Selection;Learning with the Minimum Description Length Principle;2023

4. Graph Summarization;Encyclopedia of Big Data Technologies;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3