Detach-ROCKET: sequential feature selection for time series classification with random convolutional kernels

Author:

Uribarri Gonzalo,Barone Federico,Ansuini Alessio,Fransén Erik

Abstract

AbstractTime Series Classification (TSC) is essential in fields like medicine, environmental science, and finance, enabling tasks such as disease diagnosis, anomaly detection, and stock price analysis. While machine learning models like Recurrent Neural Networks and InceptionTime are successful in numerous applications, they can face scalability issues due to computational requirements. Recently, ROCKET has emerged as an efficient alternative, achieving state-of-the-art performance and simplifying training by utilizing a large number of randomly generated features from the time series data. However, many of these features are redundant or non-informative, increasing computational load and compromising generalization. Here we introduce Sequential Feature Detachment (SFD) to identify and prune non-essential features in ROCKET-based models, such as ROCKET, MiniRocket, and MultiRocket. SFD estimates feature importance using model coefficients and can handle large feature sets without complex hyperparameter tuning. Testing on the UCR archive shows that SFD can produce models with better test accuracy using only 10% of the original features. We named these pruned models Detach-ROCKET. We also present an end-to-end procedure for determining an optimal balance between the number of features and model accuracy. On the largest binary UCR dataset, Detach-ROCKET improves test accuracy by 0.6% while reducing features by 98.9%. By enabling a significant reduction in model size without sacrificing accuracy, our methodology improves computational efficiency and contributes to model interpretability. We believe that Detach-ROCKET will be a valuable tool for researchers and practitioners working with time series data, who can find a user-friendly implementation of the model at https://github.com/gon-uri/detach_rocket.

Funder

Digital Futures

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3