Time series clustering with random convolutional kernels

Author:

Jorge Marco-BlancoORCID,Rubén Cuevas

Abstract

AbstractTime series data, spanning applications ranging from climatology to finance to healthcare, presents significant challenges in data mining due to its size and complexity. One open issue lies in time series clustering, which is crucial for processing large volumes of unlabeled time series data and unlocking valuable insights. Traditional and modern analysis methods, however, often struggle with these complexities. To address these limitations, we introduce R-Clustering, a novel method that utilizes convolutional architectures with randomly selected parameters. Through extensive evaluations, R-Clustering demonstrates superior performance over existing methods in terms of clustering accuracy, computational efficiency and scalability. Empirical results obtained using the UCR archive demonstrate the effectiveness of our approach across diverse time series datasets. The findings highlight the significance of R-Clustering in various domains and applications, contributing to the advancement of time series data mining.

Funder

Ministerio de Asuntos Econ-os y Transformaci-igital, Gobierno de Espa

Universidad Carlos III

Publisher

Springer Science and Business Media LLC

Reference60 articles.

1. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics in high dimensional space. In: Database theory-ICDT 2001: 8th international conference London, UK, January 4–6, 2001 Proceedings 8, Springer, pp 420–434

2. Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering-a decade review. Inform Syst 53:16–38

3. Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? The J Mach Learn Res 17(1):152–161

4. Bengio Y, Courville A, Vincent P (2013) Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Int 35(8):1798–1828

5. Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. KDD workshop. Seattle, WA, USA, pp 359–370

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3