SIAS-miner: mining subjectively interesting attributed subgraphs

Author:

Bendimerad Anes,Mel Ahmad,Lijffijt Jefrey,Plantevit MarcORCID,Robardet Céline,De Bie Tijl

Abstract

AbstractData clustering, local pattern mining, and community detection in graphs are three mature areas of data mining and machine learning. In recent years, attributed subgraph mining has emerged as a new powerful data mining task in the intersection of these areas. Given a graph and a set of attributes for each vertex, attributed subgraph mining aims to find cohesive subgraphs for which (some of) the attribute values have exceptional values. The principled integration of graph and attribute data poses two challenges: (1) the definition of a pattern syntax (the abstract form of patterns) that is intuitive and lends itself to efficient search, and (2) the formalization of the interestingness of such patterns. We propose an integrated solution to both of these challenges. The proposed pattern syntax improves upon prior work in being both highly flexible and intuitive. Plus, we define an effective and principled algorithm to enumerate patterns of this syntax. The proposed approach for quantifying interestingness of these patterns is rooted in information theory, and is able to account for background knowledge on the data. While prior work quantified the interestingness for the cohesion of the subgraph and for the exceptionality of its attributes separately, then combining these in a parameterized trade-off, we instead handle this trade-off implicitly in a principled, parameter-free manner. Empirical results confirm we can efficiently find highly interesting subgraphs.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mining Java Memory Errors using Subjective Interesting Subgroups with Hierarchical Targets;2023 IEEE International Conference on Data Mining Workshops (ICDMW);2023-12-04

2. Unexpected Attributed Subgraphs: a Mining Algorithm;Proceedings of the International Conference on Advances in Social Networks Analysis and Mining;2023-11-06

3. Polynomial-delay enumeration algorithms in set systems;Theoretical Computer Science;2023-06

4. Enumeration of Support-Closed Subsets in Confluent Systems;Algorithmica;2022-01-24

5. GraphAnoGAN: Detecting Anomalous Snapshots from Attributed Graphs;Machine Learning and Knowledge Discovery in Databases. Research Track;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3