Fast, accurate and explainable time series classification through randomization

Author:

Cabello NestorORCID,Naghizade Elham,Qi Jianzhong,Kulik Lars

Abstract

AbstractTime series classification (TSC) aims to predict the class label of a given time series, which is critical to a rich set of application areas such as economics and medicine. State-of-the-art TSC methods have mostly focused on classification accuracy, without considering classification speed. However, efficiency is important for big data analysis. Datasets with a large training size or long series challenge the use of the current highly accurate methods, because they are usually computationally expensive. Similarly, classification explainability, which is an important property required by modern big data applications such as appliance modeling and legislation such as the European General Data Protection Regulation, has received little attention. To address these gaps, we propose a novel TSC method – the Randomized-Supervised Time Series Forest (r-STSF). r-STSF is extremely fast and achieves state-of-the-art classification accuracy. It is an efficient interval-based approach that classifies time series according to aggregate values of the discriminatory sub-series (intervals). To achieve state-of-the-art accuracy, r-STSF builds an ensemble of randomized trees using the discriminatory sub-series. It uses four time series representations, nine aggregation functions and a supervised binary-inspired search combined with a feature ranking metric to identify highly discriminatory sub-series. The discriminatory sub-series enable explainable classifications. Experiments on extensive datasets show that r-STSF achieves state-of-the-art accuracy while being orders of magnitude faster than most existing TSC methods and enabling for explanations on the classifier decision.

Funder

Australian Research Council's Discovery Projects

University of Melbourne

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3