Random walks with variable restarts for negative-example-informed label propagation

Author:

Maxwell SeanORCID,Koyutürk Mehmet

Abstract

AbstractLabel propagation is frequently encountered in machine learning and data mining applications on graphs, either as a standalone problem or as part of node classification. Many label propagation algorithms utilize random walks (or network propagation), which provide limited ability to take into account negatively-labeled nodes (i.e., nodes that are known to be not associated with the label of interest). Specialized algorithms to incorporate negatively-labeled nodes generally focus on learning or readjusting the edge weights to drive walks away from negatively-labeled nodes and toward positively-labeled nodes. This approach has several disadvantages, as it increases the number of parameters to be learned, and does not necessarily drive the walk away from regions of the network that are rich in negatively-labeled nodes. We reformulate random walk with restarts and network propagation to enable “variable restarts", that is the increased likelihood of restarting at a positively-labeled node when a negatively-labeled node is encountered. Based on this reformulation, we develop CusTaRd, an algorithm that effectively combines variable restart probabilities and edge re-weighting to avoid negatively-labeled nodes. To assess the performance of CusTaRd, we perform comprehensive experiments on network datasets commonly used in benchmarking label propagation and node classification algorithms. Our results show that CusTaRd consistently outperforms competing algorithms that learn edge weights or restart profiles, and that negatives close to positive examples are generally more informative than more distant negatives.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3