VPint: value propagation-based spatial interpolation

Author:

Arp LaurensORCID,Baratchi Mitra,Hoos Holger

Abstract

AbstractGiven the common problem of missing data in real-world applications from various fields, such as remote sensing, ecology and meteorology, the interpolation of missing spatial and spatio-temporal data can be of tremendous value. Existing methods for spatial interpolation, most notably Gaussian processes and spatial autoregressive models, tend to suffer from (a) a trade-off between modelling local or global spatial interaction, (b) the assumption there is only one possible path between two points, and (c) the assumption of homogeneity of intermediate locations between points. Addressing these issues, we propose a value propagation-based spatial interpolation method called VPint, inspired by Markov reward processes (MRPs), and introduce two variants thereof: (i) a static discount (SD-MRP) and (ii) a data-driven weight prediction (WP-MRP) variant. Both these interpolation variants operate locally, while implicitly accounting for global spatial relationships in the entire system through recursion. We evaluated our proposed methods by comparing the mean absolute error, root mean squared error, peak signal-to-noise ratio and structural similarity of interpolated grid cells to those of 8 common baselines. Our analysis involved detailed experiments on a synthetic and two real-world datasets, as well as experiments on convergence and scalability. Empirical results demonstrate the competitive advantage of VPint on randomly missing data, where it performed better than baselines in terms of mean absolute error and structural similarity, as well as spatially clustered missing data, where it performed best on 2 out of 3 datasets.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

EU Horizon 2020

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Training-free thick cloud removal for Sentinel-2 imagery using value propagation interpolation;ISPRS Journal of Photogrammetry and Remote Sensing;2024-10

2. Deep Spatial Prediction via Heterogeneous Multi-source Self-supervision;ACM Transactions on Spatial Algorithms and Systems;2023-08-16

3. Deep geometric neural network for spatial interpolation;Proceedings of the 30th International Conference on Advances in Geographic Information Systems;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3